Aplicaciones de los bacteriófagos en la terapia antimicrobiana

Dentro de la terapia fágica, podemos distinguir entre la terapia fágica convencional, la terapia con enzimas fágicas y la terapia combinada de bacteriófagos y antibióticos (Brunel and Guery, 2017). Dentro de la terapia combinada de bacteriófagos y antibióticos, aparece el uso de fagos como adyuvantes de los antibióticos (Lu and Collins, 2009). Conjuntamente a éstas, el uso de fagos como vacunas también aparece como una opción a tener en cuenta (Adhya et al., 2014). Todas estas aplicaciones representan el presente y futuro de la terapia fágica.

Índice
  1. Terapia fágica convencional
  2. Enzimas fágicas
  3. Combinación de fagos y antibióticos
  4. Bacteriófagos como adyuvantes de los antibióticos
  5. Bacteriófagos en la vacunación
  6. Bibliografía

Terapia fágica convencional

La terapia fágica clínica es el tratamiento o prevención de infecciones en humanos y el uso de bacteriófagos en la modificación del microbioma (Abedon et al., 2017). En la terapia fágica convencional, aparecen dos formas de enfrentar a la bacteria:

Un fago. El uso de un único fago aumenta el riesgo de generar bacterias resistentes a dicho bacteriófago. Este hecho, unido al limitado espectro de acción que ofrece un único fago desecha esta opción para terapia clínica (Malik et al., 2017). La opción usada en la terapia fágica convencional es el cóctel de fagos.

Cóctel de fagos. Para la terapia fágica, los fagos líticos se compilan en preparaciones de múltiples fagos llamadas cóctel, cuya eficacia ya ha sido probada in vitro frente a la bacteria objetivo anteriormente (Lin et al., 2017). También hay que tener en cuenta, como ya hemos comentado en el punto 5.3, que la terapia fágica convencional solo puede ser llevada a cabo por fagos líticos, no temperados, ya que solo en los fagos líticos tenemos la seguridad de que éstos tengan efecto bactericida (Maciejewska et al., 2018).

Enzimas fágicas

De forma simultánea al renovado interés en la terapia fágica convencional, ha habido grandes esfuerzos en desarrollar agentes antibacterianos a partir de proteínas decodificadas por fagos (Roach and Donovan, 2015). Aquí están los ejemplos más notables.

Endolisinas. Estas enzimas se encargan de degradar la pared celular bacteriana de peptidoglicano durante la fase tardía de la replicación en los fagos. Esta degradación provoca inestabilidad de la pared bacteriana, que termina desembocando en la ruptura de ésta por las diferencias de la presión osmótica entre el interior y el exterior celular. Estas enzimas aparecen especialmente en fagos que se enfrentan a bacterias grampositivas, ya que en bacterias gramnegativas tiene como barrera extra a la membrana externa (Roach and Donovan, 2015).

Peptidoglicano hidrolasas asociadas al virión. Esta enzima participa en la hidrólisis de la pared celular de peptidoglicano después del acoplamiento del fago. No provoca la lisis de la bacteria, más bien degrada el peptidoglicano a nivel local para que el fago pueda transferir su ADN, facilitando su labor. De esta manera, la rotura de la capa de proteoglicano desemboca en lisis osmótica y muerte de la bacteria. Estas enzimas aparecen en fagos que atacan a bacterias tanto grampositivas o gramnegativas (Latka et al., 2017; Roach and Donovan, 2015).

Polisacárido depolimerasas. Estas hidrolasas degradan carbohidratos macromoleculares dentro de los polisacáridos extracelulares y los lipopolisacáridos que envuelven la pared celular bacteriana (Roach and Donovan, 2015). No tienen actividad antibacteriana, pero poseen el potencial de reducir la virulencia de las bacterias, ya que estas proteínas provocan la pérdida o la modificación de estructuras que aparecen en el exterior de la bacteria. Esta propiedad hace que estas enzimas deban ser tenidas en cuenta para la terapia clínica (Latka et al., 2017). Una de esas estructuras es el biofilm bacteriano; las depolimerasas tienen la capacidad de degradarlo. De hecho, hay varios estudios confirmando este fenómeno; éstos se pueden observar en el trabajo de Maciejewska (Maciejewska et al., 2018).

Holinas. Estas proteínas están relacionadas con la fase de lisis bacteriana; son responsables de una mayor permeabilización de la membrana celular, que permite a las endolisinas atacar al peptidoglicano. De este hecho podemos deducir que, el uso combinado de holinas y endolisinas puede aumentar la potencia lítica del tratamiento (Roach and Donovan, 2015).

El tratamiento con enzimas fágicas tiene similitudes y diferencias al compararlo con la terapia fágica convencional. La diferencia más destacable es que el espectro de acción de las enzimas fágicas es variable. Así, las lisinas producidas por bacteriófagos específicos de bacterias grampositivas son muy específicas, pudiendo llegar a nivel de especie, o incluso a nivel de serotipo. Por el contrario, las lisinas producidas por bacteriófagos de bacterias gramnegativas tienen un espectro de acción más amplio, pudiendo actuar frente a un rango de especies (Maciejewska et al., 2018).

Combinación de fagos y antibióticos

El uso combinado de ambos agentes ha obtenido excelentes resultados in vivo e in vitro, tanto en lo respectivo a la eliminación de la bacteria objetivo, como en la limitación de resistencias (Torres-Barceló and Hochberg, 2016). Así, se observa un efecto de sinergia en el uso combinado de estos compuestos especialmente en infecciones provocadas por bacterias formadoras de biofilms (Maciejewska et al., 2018).

Normalmente, la bacteria resistente a uno de los agentes es eliminada por el otro medicamento; sin embargo, pueden darse más casos; en la imagen siguiente podemos verlos esquematizados. El uso simultáneo de estos dos agentes puede generar la aparición de bacterias resistentes a ambos agentes; este hecho tiene unos costes de adaptación, por lo que estos “dobles resistentes” crecen de forma lenta y son menos patogénicos que las bacterias sensibles. Otro posible efecto del uso simultáneo de fagos y antibióticos es la restricción de la posible evolución de la bacteria, de forma que ésta puede desarrollar resistencia al fago, pero hacerla sensible al antibiótico, o viceversa. El uso secuencial de estos agentes reduce la probabilidad de mutaciones de resistencia en pequeñas poblaciones, y el crecimiento de poblaciones con dichas mutaciones es limitado (Torres-Barceló and Hochberg, 2016).

Esta forma de terapia puede atraer el interés de las empresas farmacéuticas, ya que pueden esquivar diversos problemas en lo referente a la regulación. No obstante, en la actualidad no se entiende del todo el fenómeno de sinergia y los mecanismos subyacentes de éste, por lo que hace falta una mejor comprensión del tema para una aplicación más precisa de esta terapia (Torres-Barceló and Hochberg, 2016).

Mecanismos de sinergia entre antibióticos y fagos. (Torres-Barceló and Hochberg, 2016).
Mecanismos de sinergia entre antibióticos y fagos. (Torres-Barceló and Hochberg, 2016).

Bacteriófagos como adyuvantes de los antibióticos

Como hemos visto anteriormente, aunque no sirven para la terapia fágica convencional, los fagos lisogénicos pueden tener determinados usos en terapia. El proceso de transducción puede ser usado para transferir genes entre el fago y la bacteria, de forma que ésta se vuelva más sensible a los antibióticos (Wittebole et al., 2014).

Un estudio llevado a cabo por microbiólogos de la Universidad de Tel Aviv así lo demostró. Su experimento se llevó a cabo con dos cepas de E. coli, una con resistencia a la estreptomicina, y otra con resistencia al ácido nalidíxico. Mediante este proceso de lisogenización, los fagos transferían una serie de cassettes génicos que aportan sensibilidad al antibiótico a una serie de genes determinados, rpsL y gyrA, respectivamente. Los resultados fueron favorables, y si bien esta recombinación genética no es útil para matar a la bacteria, sí que la hace más sensible al patógeno a los antibióticos a los que previamente era resistente. Esta característica es de gran utilidad, especialmente en los hospitales, lugares donde aparecen microbios resistentes con facilidad (Edgar et al., 2011).

Otro experimento llevado a cabo por la Universidad de Boston tuvo resultados similares. En éste, usaron una combinación de antibióticos y fagos modificados genéticamente para acabar con una cepa de E. coli. Este fago tenía el objetivo de sobreexpresar el gen lexA3, un represor de la respuesta SOS. El modo de funcionamiento de este experimento se puede observar en la imagen 6. Los antibióticos dañan el ADN, provocando la inducción de la respuesta SOS. El fago suprime la respuesta SOS, actuando como adyuvante del antibiótico, y, de esta manera, aumenta el número de bacterias muertas. Los resultados fueron favorables: se observó un aumento de la supervivencia de ratones infectados, así como una reducción de la aparición de bacterias resistentes a antibióticos (Lu and Collins, 2009).

Combinación de la terapia fágica con fagos modificados y antibióticos. (Lu and Collins, 2009).
Combinación de la terapia fágica con fagos modificados y antibióticos. (Lu and Collins, 2009).

Sin embargo, hay que decir que el uso de fagos modificados genéticamente esta prohibido por los organismos gubernamentales de Estados Unidos y Europa (Maciejewska et al., 2018).

Bacteriófagos en la vacunación

Una idea que está siendo evaluada es el uso de fagos como agentes presentadores del antígeno en las vacunas, ya que éstos tienen la capacidad de estimular el sistema inmune, tanto el humoral como el celular. En la actualidad, aparecen dos formas por las que los bacteriófagos pueden ser usados en la vacunación: en una, se producen partículas inmunogénicas que muestran al antígeno en la superficie fágica (phage display vaccines); mientras que, en la otra, las vacunas de fagos de ADN se producen por la incorporación de genes del antígeno al genoma fágico bajo el control de promotores eucariotas fuertes. Así, los fagos se usan como portadores pasivos para transferir ADN que codifica el antígeno en células de mamíferos donde el gen del antígeno es expresado (phage DNA vaccines) (Adhya et al., 2014).

Normalmente, estos dos métodos se suelen combinar, de manera que se producen fagos que portan el gen del antígeno a la vez que muestra proteínas o péptidos de éste en su superficie. Las proteínas de la superficie son seleccionadas en función de su afinidad con las células presentadoras de antígeno (Adhya et al., 2014).

Las partículas fágicas son estables de forma natural, por lo que su procesado es sencillo, y ofrece la posibilidad de generar producción de vacunas a larga escala a un precio menor que el actual. A esto hay que sumarle que funciona como adyuvante, mejorando la respuesta inmune frente al antígeno que presenta. (Adhya et al., 2014).

Bibliografía

Abedon ST, García P, Mullany P, et al. (2017) Editorial: Phage Therapy: Past, Present and Future. Frontiers in Microbiology 8. DOI: 10.3389/fmicb.2017.00981.

Adhya S, Merril CR and Biswas B (2014) Therapeutic and Prophylactic Applications of Bacteriophage Components in Modern Medicine. Cold Spring Harbor Perspectives in Medicine 4(1): a012518. DOI: 10.1101/cshperspect.a012518.

Brunel A-S and Guery B (2017) Multidrug resistant (or antimicrobial-resistant) pathogens - alternatives to new antibiotics? Swiss Medical Weekly 147: w14553. DOI: 10.4414/smw.2017.14553.

Edgar R, Friedman N, Molshanski-Mor S, et al. (2011) Reversing Bacterial Resistance to Antibiotics by Phage-Mediated Delivery of Dominant Sensitive Genes. Applied and Environmental Microbiology: AEM.05741-11. DOI: 10.1128/AEM.05741-11.

Latka A, Maciejewska B, Majkowska-Skrobek G, et al. (2017) Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology 101(8): 3103–3119. DOI: 10.1007/s00253-017-8224-6.

Lin DM, Koskella B and Lin HC (2017) Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics 8(3): 162–173. DOI: 10.4292/wjgpt.v8.i3.162.

Lu TK and Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America 106(12): 4629–4634. DOI: 10.1073/pnas.0800442106.

Lu TK and Koeris MS (2011) The next generation of bacteriophage therapy. Current Opinion in Microbiology 14(5). Antimicrobials/Genomics: 524–531. DOI: 10.1016/j.mib.2011.07.028.

Maciejewska B, Olszak T and Drulis-Kawa Z (2018) Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Applied Microbiology and Biotechnology 102(6): 2563–2581. DOI: 10.1007/s00253-018-8811-1.

Malik DJ, Sokolov IJ, Vinner GK, et al. (2017) Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Advances in Colloid and Interface Science 249. Recent nanotechnology and colloid science development for biomedical applications: 100–133. DOI: 10.1016/j.cis.2017.05.014.

Roach DR and Donovan DM (2015) Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage 5(3): e1062590. DOI: 10.1080/21597081.2015.1062590.

Torres-Barceló C and Hochberg ME (2016) Evolutionary Rationale for Phages as Complements of Antibiotics. Trends in Microbiology 24(4): 249–256. DOI: 10.1016/j.tim.2015.12.011.

Wittebole X, De Roock S and Opal SM (2014) A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5(1): 226–235. DOI: 10.4161/viru.25991.

Artículos relacionados

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Subir

Esta página usa cookies para asegurar que damos la mejor experiencia al usuario en nuestra web. ¿Las aceptas? Leer Más