Para poder hacer una clasificación de los organismos procariotas hay que hacer análisis genéticos, estructurales y de comportamiento. Además, su nomenclatura (su forma de llamarlos) debe cumplir ciertas reglas.
Vamos a ver todo esto, pero antes nos centraremos en las hipótesis sobre la vida de los microorganismos en la tierra primigenia, ya que, a partir de estos microbios primitivos, se forman los árboles filogenéticos a partir de los cuales se generan las clasificaciones actuales de los seres vivos.
Índice de contenidos
La tierra se formó hace 4600 millones de años. Se cree que la vida precelular pudo ser un ‘’mundo de RNA’’, ya que esta molécula tiene, tanto la capacidad de replicarse, como la de catalizar reacciones enzimáticas.
Se puede considerar que la vida surgió hace 3500-3800 millones de años. Esto es debido al hallazgo de unos microfósiles de procariotas hallados en unos estromatolitos del oeste de Australia. Los estromatolitos son un tipo de rocas estratificadas formadas por la incorporación sedimentos minerales sobre poblaciones bacterianas laminadas.
Estos estromatolitos están formados por unas bacterias filamentosas anaerobias y fotótrofas, con fotosíntesis anoxigénica, aparentemente relacionadas con una bacteria fotótrofa anoxigénica actual llamada Chloroflexus. Las cianobacterias y la fotosíntesis anoxigénica se desarrollaron más tarde.
La diversidad microbiana se incrementó a medida que el oxígeno se hizo más abundante (hace 2000 millones de años).
Los eucariotas surgieron a partir de procariotas. La hipótesis más extendida sobre el origen de los eucariotas es la teoría endosimbiótica, que propone que las mitocondrias y cloroplastos surgieron de la incorporación estable dentro de otro tipo de célula. Las mitocondrias provendrían de una bacteria quimioheterótrofa anaerobia facultativa, mientras que los cloroplastos de una bacteria con fotosíntesis oxigénica.
Las mitocondrias surgieron de un grupo de proteobacterias (que es un grupo muy amplio de GRAM negativas), concretamente de la clase alfa (α). Los cloroplastos parece que provienen de un Phylum común con las cianobacterias (tanto cianobacterias como cloroplastos llevan a cabo fotosíntesis oxigénica).
Esta teoría se basa en la fisiología y su metabolismo, además de en la propia secuencia y estructura de mitocondrias y cloroplastos, ya que contienen ribosomas del tipo procariota, y tienen secuencias génicas del RNAr 16S característicos de procariotas. Los ribosomas de mitocondrias y cloroplastos son sensibles a los mismos antibióticos que los de los procariotas. Además, contienen una pequeña molécula de DNA circular, típica de procariotas.
Dentro de esta teoría se han propuesto dos hipótesis:
Las arqueas no tienen núcleo; entonces esta teoría sostiene que el núcleo se originó después, tras la asociación y transferencia de los genes responsables de síntesis de lípidos desde el simbionte al cromosoma del hospedador. A partir de esa síntesis de lípidos se forma todo el sistema de endomembranas y la membrana nuclear. Esta célula con núcleo y poseedora de mitocondrias habría adquirido después el ancestro de cloroplastos por endosimbiosis.
Lo que está claro es que la célula eucariota es una quimera, ya que tiene características de bacterias y de arqueas. Los eucariotas tienen un tipo de lípidos presentes en bacterias, al igual que su metabolismo energético. Tienen sistemas de transcripción y traducción más parecidos a los de arqueas. Es probable que el proceso evolutivo se prolongara largos periodos de tiempo y que sufriera numerosos arranques en falso y callejones sin salida, además de haber sido un proceso evolutivo no lineal.
El origen de la célula eucariota podemos considerarlo como un punto de partida para la explosión de la diversidad biológica (aparición de los seres pluricelulares, vida animal, fúngica, etc).
Es la ciencia de la clasificación biológica. Se compone de clasificación, nomenclatura e identificación:
Es el estudio científico de los microorganismos, cuyo objetivo final es agruparlos taxonómicamente. Abarca disciplina variadas como morfología, biología celular, ecología, etc.
La sistemática es la ciencia que asocia la taxonomía con la filogenia (historia evolutiva de los organismos). El objetivo clave de la taxonomía es la comprensión de la filogenia, ya que la jerarquía taxonómica tiene que reflejar la jerarquía filogenética: agrupar los microorganismos por características comunes implica que ese grupo ha evolucionado a partir de un ancestro común, de tal manera que cada especie retiene características de sus ancestros.
La mayor parte de la información para establecer la filogenia proviene de fósiles, pero los microorganismos no fosilizan con facilidad. A falta de evidencia fósil, en el caso de la filogenia de procariotas; hay que recurrir a otros datos. En el caso de eucariotas, los estudios de secuenciación del DNA concuerdan muy bien con los registros fósiles (que en eucariotas si hay). Esto ha llevado a los científicos a establecer la filogenia de procariotas mediante de estudios de secuenciación y de hibridación.
Para ello eligen determinadas secuencias del genoma: las moléculas elegidas han sido las de RNA, ya que son los mejores cronómetros evolutivos. Más concretamente los RNAr de la subunidad pequeña (SSU rRNA: Small ribosomal Subunit RNA): el 16S en procariotas y el 18S en eucariotas. A partir de ellas se deducen filogenias microbianas.
Están presentes en todos los organismos (tienen distribución universal) y en todos realizan la misma función. Además, como el ribosoma es esencial para la supervivencia, los genes que codifican sus componentes no pueden soportar grandes cambios, ya que resultan letales: los ribosomas tienen una estructura secundaria determinada y muy específica.
Los cambios que se mantienen y que podemos observar han sido cambios muy lentos y muy leves. Esto permite comparar organismos muy separados en la evolución. Además, no están sujetos a transferencia génica horizontal: no se transfieren por plásmidos, debido a que están en el cromosoma.
En base a comparaciones de las secuencias del SSU rRNA se han podido establecer relaciones evolutivas y arboles filogenéticos. Se han creado los tres dominios principales. La longitud de las ramas indica relaciones evolutivas entre organismos, pero no tiempo.
Los árboles filogenéticos se establecen:
Un árbol tiene ramas y nodos internos y externos. Pero pueden o no tener raíz, en el sentido de saber cuál es el ancestro común de varias especies, géneros, cepas, etc.
Los nodos donde hay números son especies, cepas, géneros, y etc. Los nodos internos son ancestros, es decir los nodos externos son los actuales. Las ramas determinan el orden de descendencia y los ancestros de los nodos, los que son los ancestros de las cepas actuales. La longitud de esas ramas no indica realmente tiempo sino el número de cambios que se han producido.
Si no hay raíz, el árbol no da una idea evolutiva, solo se establecen relaciones de parentesco. Con raíz se da cierta idea evolutiva.
La distancia evolutiva (relación de organismos) es la forma en la que se indica, cuantitativamente, el número de posiciones que difieren dos secuencias nucleotídicas alineadas. Es decir, indica la relación entre los organismos. La relación se mide en distancia evolutiva. Los organismos se agrupan en función de las semejanzas de sus secuencias.
Hay un método muy empleado para establecer las relaciones filogenéticas: el análisis de parsimonia. Las relaciones se determinan calculando el número mínimo de cambios necesarios para llegar a las secuencias finales que se están comparando, suponiendo que el cambio evolutivo se produce por la vía más corta (menor número de cambios desde el antecesor hasta el organismos en cuestión).
Con el análisis informático del alineamiento de secuencias del SSU rRNA se ha confirmado la presencia de unas secuencias firma: secuencias cortas y conservadas, específicas para un grupo filogenéticamente definido de organismos. Se pueden definir secuencias firma características de dominio, género o especie particular. Ayudan a clasificar organismos aislados recientemente o previamente mal clasificados en su grupo filogenético correspondiente.
Gracias al análisis filogenético se han podido establecer los 3 dominios fundamentales: Bacteria, Archaea y Eukarya.

La taxonomía en procariotas se puede considerar taxonomía polifásica: engloba varios métodos con diferentes análisis.
En el análisis fenotípico se tiene en cuenta:
Este tipo de análisis tiene en cuenta diferencias metabólicas, estructurales, etc. En estudios clínicos donde es necesario la identificación existen toda una serie de rasgos fenotípicos que permiten, clara y rápidamente, discriminar entre la identificación más probable.
Las características morfológicas establecen morfotipos dentro de una especie. Pero en sí mismas no dan mucha información. Al microscopio óptico dos especies pueden ser muy parecidas morfológicamente; por ejemplo, dos cocos. Por eso puede servir de ayuda el que presente ciertas estructuras como endosporas, flagelos, etc. Las tinciones diferenciales permiten diferenciar algunos grupos de organismos pero no siempre se pueden aplicar ni dan demasiada información; tienen utilidad limitada (por ejemplo, no tiene sentido hacer tinción de GRAM a micoplasmas o arqueas).
Las características metabólicas, bioquímicas y fisiológicas permiten establecer biotipos. Se realiza mediante pruebas bioquímicas o técnicas de quimio taxonomía.
Las características serológicas permiten establecer serotipos, como el sistema de Lancefield. Si disponemos del antisuero adecuado con anticuerpos específicos, como la unión antígeno anticuerpo es específica, con esos anticuerpos podremos clasificarlo si se unen al microorganismo.
La sensibilidad a fagos permite establecer fagotipos. Se realiza mediante pruebas de fagotipia: consisten en ensayos en los que se trata de determinar a qué fagos es sensible una determinada bacteria. Los fagos son específicos y suelen infectar a una especie concreta o una variante concreta. Se siembra cada cepa en una placa diferente y se siembra uniformemente la cepa en cuestión. Después, se inoculan los distintos fagos en cada una de las cuadriculas, se incuban las placas y se observa si hay o no lisis. Si el fago ha lisado la bacteria, aparece halo de lisis y quiere decir que la bacteria es sensible a ese fago. Esto permite comparar diferentes cepas por su sensibilidad a fagos.
En el análisis genotípico se estudia:
El contenido en G+C. Puede fluctuar del 20-80%. Fluctúa más en procariotas que en eucariotas. Es posible que dos organismos puedan tener el mismo contenido de G+C pero ser organismos muy distintos: a partir de una composición de bases muy parecida se pueden obtener secuencias muy diferentes y dar lugar a numerosos organismos.
Realmente el análisis químico del porcentaje G+C no es fiable taxonómicamente, y se está quedando obsoleto: va siendo sustituido por el análisis in silico. Con el tiempo quedará para confirmar la asignación de un organismo a un taxón superior.
La hibridación DNA-DNA (DDH) se basa en el hecho de que, al calentar el DNA de dos organismos, las dos cadenas se van a desnaturalizar, y el enfriamiento lento permite la renaturalización. Al estar mezclados los DNA de ambos organismos, pueden hibridar siempre y cuando las secuencias sean iguales o similares. El grado de hibridación nos indica el grado de parentesco. Cuanto mayor sea el grado de hibridación mayor es el parentesco.
Se prepara el DNA de ambos organismos. Uno se fragmenta y se marca con fosfato radiactivo. Se desnaturalizan ambos DNA y se mezclan. Siempre hay que añadir una cantidad saturante del DNA sin marcar para evitar que el marcado hibride consigo mismo. A continuación, se separa el DNA hibridado del no hibridado y se mide la cantidad de radiación.
Se interpretan los resultados observando la radiactividad, viendo que el 100% va a ser el DNA que ha hibridado consigo mismo. Dos cepas son de la misma especie si los valores DDH ≥ 70%. Dos cepas son del mismo género si los valores DDH ≥ 25%. Si es menor no pertenecen al mismo género.
Hibridación DNA-RNA (DRH). Estos experimentos también se pueden hacer con DNA de uno y RNA de otro. Estas pruebas permiten la clasificación y también la identificación rápida de algunas bacterias mediante "sondas" adecuadas. Una sonda es una cadena específica de ácido nucléico que, una vez marcada, se puede utilizar para que hibride con su complementaria en una mezcla con ácidos nucléicos.
Por ejemplo, si estamos analizando un alimento para ver si se ha contaminado con Salmonella, lo que se hace es obtener la sonda. El DNA de esta batería se fragmenta con enzimas de restricción y se selecciona un fragmento adecuado, es decir, un fragmento que solo este en Salmonella y no en otras bacterias. Se marca radiactivamente o con fluorescencia. Por otro lado, la muestra de alimento se filtra y las bacterias presentes en el alimento crecen porque se hacen crecer en medio adecuado. Obtenemos cadenas sencillas y si hay DNA de Salmonella la radiactividad o la fluorescencia permite identificar la bacteria.
Por otro lado, la prueba de la huella genómica no requiere secuenciación de nucleótidos. Se trata de generar patrones de fragmentos de restricción (que son fragmentos de DNA obtenidos con enzimas de restricción) para analizar la semejanza genotípica entre las cepas. Permite discriminar a nivel de especie, subespecie, y a menudo cepa, por lo que es válido en clasificación. Hay distintos métodos:
Ribotipado. Es un método especifico y rápido y se centra en un solo gen, en concreto en el gen que codifica el RNAr de la subunidad pequeña (SSU rRNA). Pasos para el ribotipado:
Se trata de amplificar por PCR el DNA que codifica el RNA ribosómico de la unidad pequeña. Se marcan y ya tenemos la sonda marcada. Después, se tratará con enzimas de restricción el genoma del organismo y esos fragmentos se separan por electroforesis. Solamente hibridará donde aparezca su cadena complementaria. Ese perfil va a ser único para una determinada especie bacteriana. Este perfil generado se digitaliza y se compara con otros de otros microorganismos. Hay otros que analizan la variación en la secuencia del DNA en el genoma completo; no se centran en un gen sino en el genoma completo.
Análisis de secuencias repetitivas de DNA. Hay una serie de secuencias en los genomas que están altamente conservadas y de las cuales hay un gran número de copias. Hay 3 grandes familias de secuencias repetitivas: REP-PCR (repetitive extragenic palindromic PCR), ERIC-PCR (enterobacterial repetitive intergenic consensus) , BOX-PCR. Su número y posición difiere entre cepas cuyas secuencias han divergido.
Es una técnica válida en el estudio de la diversidad microbiana e identificación de patógenos. La muestra puede proceder de un individuo que se sospeche que tiene el microorganismo o que lo tengamos aislado en el laboratorio. El proceso comprende 3 partes:
AFLP (Amplified fragment lenght polymorphism). Polimorfismo en la longitud de los fragmentos de restricción amplificados.
El MLST (Multilocus sequence typing; análisis de secuencias multilocus). Permite caracterizar cepas dentro de una misma especie. Tiene un nivel de restricción demasiado elevado, por lo que se usan para proporcionar información a nivel de género y familia: da una excesiva resolución para niveles superiores. Se desarrolló para rastrear cepas patógenas, pero su aplicación se ha extendido a la taxonomía microbiana.
Implica la secuenciación de fragmentos de varios genes esenciales, de mantenimiento básico celular. Son unos 5-10 genes, que van a estar en el cromosoma y no van a estar sujetos a transferencia horizontal. Se comparan con las de genes equivalentes de otras cepas del mismo organismo.
Un alelo del gen se representa con un número. A cada cepa se le asigna un perfil alélico, que es una serie de números (tipificación de secuencia multilocus). Cada perfil alélico define el ‘’tipo de secuencia’’ (ST). Esto establece si entre dos cepas existe algún tipo de relación.
El grado de relación entre los distintos perfiles alélicos se representa en forma de diagramas con forma de árbol (dendrograma).
Distancia 0 = cepas idénticas
Distancia 1 = poco relacionadas.
El problema es la selección de los genes que van a ser comparados. Si no se seleccionan bien los genes puede que no se refleje la auténtica filogenia de ese microorganismo.
En el análisis filogenético se tienen en cuenta los análisis:
Los datos filogenéticos son un componente clave de la taxonomía polifásica. Utiliza las secuencias de múltiples genes a la vez para describir e identificar organismos.
Si realizamos el análisis de genes individuales, vemos que el análisis de SSU rRNA ha permitido establecer relación entre especies. Si dos especies difieren en más de un 3%, no son de la misma especie, ya que su grado de hibridación es menor del 70%. Su poca divergencia limita su eficiencia en la discriminación a nivel de especie. El problema puede evitarse analizando genes con mayor grado de divergencia.
Muchos genes tienen el inconveniente de que se transfieren horizontalmente. Para evitar eso, en filogenia son más frecuentes las estrategias basadas en análisis de secuencias multigénicas. Es similar a la técnica MLST pero con secuencias completas de genes. La secuenciación de genes no relacionados funcionalmente va a permitir:
El análisis en secuencias genómicas completas es el análisis comparativo de genoma; se compara todo con todo. Proporciona numerosos rasgos para el análisis genotípico comparativo. No está sometido a sesgo en la selección de secuencias ya que se analiza todo contra todo.
Se hace mediante la técnica FISH: hibridación fluorescente in situ. Hace falta disponer de una sonda. El procedimiento lleva 4 pasos:
El uso de ciertas sondas puede detectar microorganismos no cultivados. Pueden aplicarse directamente:
Se emplea habitualmente en:
Se basa en el sistema binomial de Linneo. Esta nomenclatura, usada también para describir al resto de seres vivos (aunque con algunas modificaciones), tiene varias reglas:
La especie procariota es un concepto distinto al de especie de organismos superiores. Pero la definición de especie que se da para organismos no es válida en microbiología, ya que en el caso de los procariotas son organismos haploides sin reproducción sexual.
Especie procariota: grupo monofilético de organismos (grupo de cepas) con el suficiente grado de coherencia o semejanza genotípica y fenotípica como para diferenciarse de sus semejantes. Los individuos tienen un cierto grado de diversidad fenotípica interna (variación genética).
Hay dos rasgos genotípicos esenciales para agrupar cepas dentro de una misma especie: semejanza de frecuencia en SSU rRNA y la hibridación de DNA. Si los genes de sus SSU rRNA tienen ≥ 97% de secuencias idénticas (lo que implica un % de G+C similar) y un grado de hibridación del DNA > 70%. dos procariotas pertenecen a la misma especie.
Idealmente una especie también se debería distinguir fenotípicamente de otras especies similares.
Una cepa (estirpe) es una población clonal formada por descendientes de una sola célula, pero sin descartar una divergencia a partir de la parental, originando células distintas. Dentro de una especie se pueden diferenciar morfotipos, biotipos, serotipos y fagotipos.
Un clon es una población de células genéticamente idénticas (iguales y descendientes de una sola célula).
En la sección de bacterias se seguirá una clasificación de acuerdo con la descrita en la segunda edición del Manual de Bergey de Bacteriología Sistemática. Es un tratado esencial sobre la taxonomía de procariotas (bacterias y arqueas). La clasificación se basa en las comparaciones de las secuencias de ácidos nucleicos, en especial las secuencias del SSU rRNA. Consta de 5 volúmenes y engloba 25 filos:
Los virus son agentes infecciosos microscópicos que han capturado la atención científica y pública por su capacidad de causar una amplia gama de enfermedades en seres vivos, desde simples resfriados hasta pandemias globales.
A pesar de su pequeño tamaño y estructura relativamente simple, los virus juegan un papel fundamental en los ecosistemas, la evolución y la biotecnología. Por todo ello, vamos a analizar a los virus más a fondo, para que aprendas lo que debes saber sobre los virus.
Índice de contenidos
"Los virus son entidades cuyo genoma se replica dentro de células vivas usando su maquinaria de síntesis. Esto determina la formación de elementos especializados (partículas virales) que permiten la transferencia del genoma viral a otras células." Esta es la definición que dieron Luria y Darnell en 1967.
Vamos a explicar todo esto. Los virus son entidades simples, acelulares, lo que significa que no están formados de células. Están formados por una cubierta proteica llamada 'cápside', y ácido nucleico (ADN o ARN); dependiendo del virus pueden haber algunas estructuras más. Los virus se dividen (su genoma se replica) en el interior de una célula viva, necesitan usar la maquinaria del hospedador para este proceso. Los elementos que sintetizan dentro de la célula se llaman viriones, y estos se encargan de llevar el genoma vírico a otra célula hospedadora, y comenzar este ciclo de nuevo. Los virus se encuentran en cualquier lugar donde haya vida (mares, océanos, aire, tierra...), pero para poder replicarse necesitan un hospedador.
Este proceso altera a la célula hospedadora y la destruye. El sistema inmune responde al virus y, en función de la fuerza de su respuesta, pueden aparecer diversos síntomas de enfermedad. En este artículo puedes más acerca del ataque de un virus (SARS-CoV-2) y la respuesta del sistema inmune.
Para evitar las infecciones y enfermedades provocadas por los virus se han creado antivirales. No obstante, los virus mutan con facilidad y esto puede provocar la resistencia a los fármacos, como ocurre también con las bacterias.
Si te has hecho alguna vez esta pregunta, a lo mejor es porque has usado antibióticos contra los virus. Esta práctica es totalmente desaconsejable, ya que los antibióticos solo se deben usar contra las bacterias; no tienen ningún efecto contra los virus. No obstante, una infección vírica puede favorecer la aparición de patógenos bacterianos. En ese caso, si se pueden usar antibióticos, pero se usan contra la infección bacteriana, no la vírica. El uso o no de éstos lo debe determinar un médico.
Los virus pueden transmitirse por contacto directo o por contacto indirecto. Esto puede variar en función del virus.
Cuando un virus se transmite por contacto directo el agente infeccioso pasa de la persona infectada a la persona no infectada por contacto físico directo. Este contacto directo implica tocar o besar, tener contacto sexual o contacto con secreciones o heridas de una persona infectada. Por ejemplo, el VIH y el ébola se transmiten por contacto directo.
Los virus que se transmiten por contacto indirecto se propagan cuando una persona infectada estornuda o tose, mandando las gotitas infectadas al aire. Esto ocurre en el caso del coronavirus COVID-19, entre otros. Las personas saludables inhalan estas gotitas infectadas o las gotitas aterrizan en los ojos, nariz o boca de las personas. De ahí que una de las medidas para prevenir la transmisión de infecciones sea toser o estornudar en la parte interna del brazo en vez de en la mano. Además, esas gotitas pueden aterrizar en superficies u objetos incluyendo mesas, pomos de las puertas o teléfonos. Si una persona no infectada toca esos objetos contaminados y luego pasa sus manos por los ojos, nariz o boca, el virus puede entrar al organismo e infectar.
Para evitar una infección vírica hay que prevenir. En caso de los virus que se transmiten por contacto directo se debe evitar tener dicho contacto, y si hay contacto, éste debe ser con las medidas higiénicas adecuadas. En el caso de los virus transmitidos por contacto indirecto se debe aumentar la higiene, tanto si el virus se trasmite por las vías respiratorias o por las heces. Lavado de manos frecuente, evitar llevarse las manos a la cara son algunas de las medidas. El uso de mascarilla también puede ayudar en caso de virus trasmitidos por las vía respiratoria. Otra gran medida de prevención es el uso de vacunas. No obstante, no hay vacunas para todas las infecciones víricas.
Si una persona está infectada por un virus del cual no hay vacunas hay que usar algún tratamiento. En el caso de los virus, se usan antivirales; al igual que los antibióticos, hay algunos de amplio espectro y otros de espectro más reducido. Algunos pueden interferir en la entrada a la célula, otros afectan a la replicación... hay diferentes vías de ataque. No obstante, hay veces en las que no hace falta un tratamiento de antivirales; si la infección es leve. Por ejemplo, en el caso del resfriado, o de la gripe, con reposo y antiinflamatorios se puede eliminar los virus y recuperar de la infección.
Los procesos vitales de los seres vivos son nutrición, relación y reproducción. Su proceso de "vida" es el que acabamos de contar. No se nutren, no se relacionan, no tienen metabolismo propio; para multiplicarse, necesitan la maquinaria del hospedador (Son parásitos intracelulares obligados). Además, las células vivas presentan ADN y ARN a la vez, mientras que los virus pueden tener ADN o ARN, pero no los dos a la vez. Por ello, los virus no son (no se les puede considerar) seres vivos. Al no ser considerados seres vivos, no pueden incluirse en ningún reino.
Antes del descubrimiento de los virus a finales del siglo XIX, ya se conocían los efectos de los virus. De hecho, hay escritos de la antigüedad que describen enfermedades de origen viral, como la poliomielitis o la viruela. Es más, en 1796, Edward Jenner creó las primeras vacunas contra la viruela, y Louis Pasteur desarrolló la vacuna frente al virus de la rabia en 1900, pero aún no sabían que el agente infeccioso que estaba tratando era un virus.
El descubrimiento de los virus se debe a Dimitri Ivanovski y Martinus Beijerinck; los que, en 1892, identificaron por primera vez un virus vegetal: TMV, el virus del mosaico del tabaco. Más adelante, en 1898, Friedrich Loeffler y Paul Frosch descubren los virus animales, específicamente un virus que causa la glosopeda o fiebre aftosa del ganado. Walter Reed descubre en 1901 el virus de la fiebre amarilla, el primer virus humano descrito. Frederick Twort descubre los bacteriófagos en 1915, pero es Félix d'Herelle el que desarrolla el trabajo de Twort y acaba acuñando el término bacteriófago.
En 1935, Wendell M. Stanley purifica y cristaliza el virus del mosaico del tabaco. Observa que está compuesto principalmente por proteínas, y que los cristales inanimados causan enfermedad en plantas sanas. En 1937, un grupo de investigadores volvió a analizar esos cristales y encontró que, además de proteínas, también había ácidos nucleicos, así que vieron que los virus están formados por proteínas y ácido nucleico.

Para una visión más amplia de la historia de los virus, consulta la historia de la microbiología: Finales del siglo XIX – actualidad > Surgimiento o escisión de algunas especialidades > Virología
La virología es una rama de la microbiología, y los virus son el principal elemento de estudio en esta rama. No obstante, hay más elementos. Todos tienen en común que son entidades microscópicas sin organización celular. Así, los seres estudiados por la virología son:
Los virus son muy heterogéneos, y su tamaño oscila entre los 20-500 nm de diámetro. Los más pequeños tienen un tamaño cercano a los de los ribosomas, mientras que los más grandes se pueden llegar a ver en el microscopio óptico.
Cómo hemos visto antes, están formados por una cubierta proteica llamada cápside y un ácido nucleico (ADN o ARN); aunque dependiendo del virus pueden haber algunas estructuras más. Por ejemplo, el coronavirus cuenta una especie de picos exteriores que le dan aspecto de corona, y los bacteriófagos cuentan con una cola que en su parte final tiene espículas que ayudan al proceso de acoplamiento al receptor celular.
Además, los virus pueden poseer una envoltura membranosa que procede de las células infectadas de un ciclo anterior. No es algo que adquieran todos los virus, así que hay virus con envoltura y sin envoltura. A los virus sin envoltura se les llama virus desnudos.
Los virus pueden clasificarse en función de su material genético. De hecho, así lo hace el Sistema Baltimore. Los virus pueden ser ADN o ARN de una cadena (monocatenario) o dos cadenas (bicatenario). A diferencia de los seres vivos, solo aparece ADN o ARN, pero no los dos a la vez. El material genético oscila entre el 5-50% del peso del virus. El tamaño puede variar entre 3-250 kb.
Virus con genoma de ADN. Puede ser circular o lineal, aunque suele ser lineal. Es típico encontrar terminaciones repetitivas en los extremos, ya que es común que se usen como sitios de inicio de replicación del genoma viral. También hay virus que presentan bases nitrogenadas modificadas, siendo habitual la modificación de la citosina. Esto evita que los sistemas de restricción del hospedador lo reconozcan y lo degraden. Para la replicación usan ADN polimerasas dependientes de ADN.
Estas son las abreviaciones que puedes encontrar sobre estos virus:
Virus con genoma de ARN. Siempre son lineales. El genoma puede tener tres conformaciones: completo (el ARN es una única molécula dentro la cápside), segmentados (el ARN se encuentra en varios fragmentos diferentes entre si, dentro de la misma cápside) y multiparticulados (genoma segmentado, con cada fragmento dentro de una propia cápside). Éstos últimos son virus vegetales. Para poder infectar la célula del hospedador, necesitan que que todos los fragmentos estén en dicha célula.
También hay que tener en cuenta la polaridad del ARNm. Si la cadena del mensajero es positiva, esto significa que la cadena del huésped es igual a la cadena del ARNm vírico, por lo que ésta puede traducirse directamente. SI la cadena del mensajero es negativa, esto significa que la cadena es complementaria a la secuencia del ARNm, así que debe ser convertido en ARN de sentido positivo. Para ello hace falta la acción previa de una ARN polimerasa.
Estas son las abreviaciones que puedes encontrar sobre estos virus:
Aparte de éstos, hay virus ARN que poseen una enzima llamada 'transcriptasa inversa' que, a partir del genoma ARN viral produce una cadena de ADN que se integra en el genoma del huésped. El ADN ya integrado en el huésped se transcribirá a ARNm, y éste más tarde se generará proteínas reguladoras y estructurales mediante el proceso de traducción.
Además, también aparecen los virus ADN bicatenario retrotranscrito. Estos virus tienen ADN de doble cadena que se replica en la célula huésped mediante transcripción inversa (también usan la transcriptasa inversa), es decir, mediante la formación de ARN intermedio a partir del molde de ADN. Este ARN es necesario para la replicación del virus.
La abreviación que podrás encontrar sobre estos virus es:
Todo el material genético se encuentra protegido del ambiente extracelular mediante cubiertas o estructuras protectoras (cápside en virus). Hay una excepción, los viroides.
La cápside está formada por unidades morfológicas llamadas capsómeros. El número de capsómeros puede variar en cada virus. Estos capsómeros están formados por grupos proteicos llamados protómeros . A la hora de formar las cápsides virales los protómeros se van autoensamblando sin necesidad de energía, ya que la interacción entre los protómeros es energéticamente más estable que los protómeros libres. Así, la estructura se regulariza y es muy eficiente.
El alto grado de compactación de la cápside viral (definido por las interacciones no covalentes entre los protómeros) explica la elevada resistencia de los virus frente a la diferentes agentes extremos. Las proteínas pueden estar más o menos plegadas entre sí, no dejando nunca de ser una estructura protectora. La cápside presenta varias morfologías:
Simetría helicoidal. La estructura protectora más simple que puede construirse a partir de un elevado número de subunidades idénticas es un cilindro formado a partir del apilamiento de una serie de anillos. Solamente posee un eje de rotación: el eje longitudinal del cilindro. Esta simetría está formada por uno o dos tipos de protómeros. Los protómeros no se encuentran totalmente alineados entre sí, lo que permite que se establezcan interacciones entre los protómeros de diferentes planos. El ARN se encuentra dispuesto también de manera helicoidal protegido por los protómeros, así que quedaría como un muelle cerrado. En los virus helicoidales con envoltura o desnudos muy largos es habitual que la cápside se encuentre menos compactada, lo que le permite 'doblarse', como en el caso del virus del sarampión (Paramyxoviridae).
Simetría icosaédrica. Un icosaedro es un poliedro regular que posee 20 caras triangulares y 12 aristas. En teoría es el modo más eficiente de empaquetar una cápside con uniones energéticamente equivalentes. Es la estructura con menor energía libre. Sin embargo, la realidad es más compleja, porque todos los virus icosaédricos regulares poseen cápsides con más de 20 protómeros. El número de mínimo de protómeros en una cápside con simetría icosaédrica regular es 60. En general, los virus icosaédricos acomodan 60 x N subunidades en sus cápsides (N=número de triangulación). Solamente están 'permitidos' ciertos números de N (1,3,4,7,9,12,… ) Sin embargo, más de 60 subunidades no pueden agruparse de manera equivalente para formar un icosaedro: lo hacen de manera quasiequivalente. A mayor número de triangulación menor estabilidad de la cápside. Los virus icosaédricos regulares con mayor número de protómeros tienden a la esfera. Algunos virus presentan espículas en los vértices de icosaedro. Son proteínas de cápside cuya función es el reconocimiento del receptor celular.
Morfología compleja. No se rige por ningún parámetro, así que la morfología puede ser totalmente variable. Por ejemplo, algunos bacteriófagos tienen una simetría llamada binaria (cabeza y cola), en la que la cabeza es icosaédrica y la cola helicoidal.
Es un componente estructural característico de algunos grupos de virus formado en su mayoría por lípidos, aunque también aparecen glucoproteínas. Procede de la membrana de la célula que ha sido infectada anteriormente por el virus. Si eliminamos los lípidos, conseguimos quitar la envoltura e inactivar al virus; de ahí que sea tan importante lavarse las manos con agua y jabón para prevenir infecciones víricas.
Esta envuelta ayuda a entrar al virus en el huésped, mediante las glucoproteínas que reconocen receptores de la célula.
Su presencia es común en varias familias de virus animales, aunque no aparece tanto en virus de plantas o de bacterias. Esto se debe a que la entrada a las células vegetales se realiza de forma traumática (por heridas y lesiones en la planta), y a que las células bacterianas tienen una capa de peptidoglicano que le confiere una elevada resistencia a la infección por virus.
La naturaleza de esta envuelta es variable, pero siempre procede del sistema de membranas del hospedador: frecuentemente procede de la membrana plasmástica, pero también puede venir de la membrana nuclear, del aparato de Golgi, o del retículo endoplasmático.
Los virus son parásitos intracelulares obligados. Pueden portar algunas enzimas, como retrotranscriptasas, ARN polimerasas o ADN polimerasas, así que no son absolutamente dependientes de la célula, pero tanto el proceso de traducción, como la energía obtenida, siempre provendrá de la célula hospedadora. En función del tipo de hospedador, se clasifican en:
Las etapas de infección dependen de muchos factores: estructural viral, genoma, presencia o no de envoltura, hospedador y cápside. Aparecen diferencias en la replicación, maduración y liberación, pero se estable un patrón general:
Es el proceso en el que el virus se fija (valga la redundancia) a la superficie del hospedador. Si el receptor está alterado o no está presente en la superficie celular, el hospedador se hace resistente. No obstante, los virus pueden mutar, y los virus mutados podrían unirse a los receptores alterados. Hay virus con capacidad de usar varios receptores en caso de que alguno este alterado.
Los bacteriófagos usan como receptores a componentes de las células: pili, flagelos, región O en GRAM (-), residuos de lipoproteínas o proteínas transportadoras.
En virus animales usan receptores de hormonas o de citocinas. Los receptores pueden ser proteicos, glucoproteínas, o azúcares, que están situados en glucoproteínas o glucolípidos.
En virus vegetales no se conocen bien los receptores pero lo que se sabe es que es necesario el daño o la destrucción de la membrana.
Al interior de la célula (citoplasma) solo entrará el material genético, así que se debe perder la cápside (y la envoltura en caso de poseerla) en un proceso llamado decapsidación.
En función de su formas, los bacteriófagos hacen este proceso de forma diferente:
Los virus animales tienen diversos métodos también:
Los virus vegetales no parecen tener un método específico; pueden entrar mediante daño en la membrana (acción mecánica de daño) o por vectores (bacterias, hongos, nemátodos o insectos). Pueden contaminar semillas por su parte interna o externa mediante los viriones. Dentro de la planta, la transmisión puede ser por los plasmodesmos (corta distancia) o por el xilema o el floema (larga distancia).
Se forma más material genético. El hospedador no cede toda la maquinaria necesaria para la replicación vírica, así que primero debe sintetizar enzimas que ayuden a tomar todo el control de la célula hospedadora (el propio virus cuenta con los genes necesarios para sintetizar dichas enzimas). Así, el primer paso es la formación del RNAm (ARN mensajero) vírico. Este material genético contiene la información para formar las proteínas tempranas necesarias para que el proceso siga adelante. Los virus tiene un tipo de replicación diferente en función de su grupo (usando el Sistema de Baltimore como clasificación; accede a la clasificación de los virus para ver más).
Los RNAm tempranos forman proteínas tempranas, enzimas sintetizadas antes de la replicación, en cantidades bajas. Éstas son necesarias para tomar el control de la célula hospedadora, regular la replicación y fabricar ciertas proteínas reguladoras como replicasas.
Los RNAm tardíos forman proteínas tardías, formadas después de la replicación, en mayor concentración. Suelen ser proteínas estructurales; proteínas de la cápside, de ensamblaje y de salida de la célula.
La maduración consiste en el proceso de ensamblaje de la cápside con el material genético, formando así viriones completos. Además, se produce el empaquetamiento del material genético por la acción de enzimas.
Es el paso del virus formado a la zona extracelular. La liberación se produce con o sin lisis celular (rotura de la membrana celular). Aunque no haya lisis celular, la célula hospedadora muere al poco tiempo, ya que la maquinaria de replicación se ha dañado y los orgánulos se han alterado.
Dentro de la sección de bacterias daremos información sobre el dominio Bacteria y el dominio Archaea. Aunque la bacteriología estudia las bacterias (y le da nombre a esta ciencia) también estudia a la arqueas. Así que podemos decir que la bacteriología estudia a los organismos procariotas.
Dentro de los procariotas, lo que podríamos decir que es microbiología general, hemos visto:
Las bacterias son organismos unicelulares sin núcleo. El dominio Bacteria se engloba dentro del superreino Prokaryota, junto al dominio Archaea. Esto significa que son organismos procariotas, no tienen un núcleo definido ni (en general) tienen orgánulos membranosos internos. Su tamaño oscila entre los 0,5 y 5 μm de longitud, por lo que es necesario un microscopio para su observación. Tienen diversas morfologías, pudiendo ser esféricas, barras, filamentosas, curvadas o helicoidales. La célula procariota es diferente a la de eucariotas y su nutrición puede ser variada.
Las bacterias son los seres vivos más abundantes del planeta. Se encuentran y se desarrollan en todos los ambientes terrestres y acuáticos, incluyendo los más extremos (calor o frío extremo, zonas radiactivas, lugares de gran presión...). También están en el cuerpo humano, si bien la mayoría son inofensivas, y algunas también nos son beneficiosas.
Conociendo todo esto, será más fácil entender esta sección. La clasificación oficial usada por la bacteriología es la clasificación de Bergey, abreviada como TOBA. En este sistema, que consta de varias partes, una de ellas está dedicada a las arqueas. Si quieres ver la clasificación TOBA entera puedes consultarla en Wiley Online Library. Eso sí, necesitarás contar con una cuenta de universidad😅
En la clasificación de Bergey se engloban a las arqueas también. De ahí que la bacteriología abarque el estudio de bacterias y arqueas. Ahora bien, éstas son diferentes. Las diferencias que tienen con las bacterias es que su pared celular no tienen peptidoglicano, su membrana celular está formada por una monocapa lipídica, los lípidos están unidos al glicerol por enlaces éter y , a la hora de la traducción, el tRNA iniciador es el metionil-tRNA. En bacterias, su pared celular contiene peptidoglicano, su membrana celular está formada por una bicapa lipídica, los lípidos están unidos al glicerol por enlaces ester, y tRNA iniciador es el formilmetionil-tRNA. En la página dedicada a arqueas tienes una sección donde se detallan más todas las diferencias que tienen.
En esta página, hemos agrupado a los procariotas en estos grupos:
Este orden es bastante usado para su estudio en la universidad, por lo que a algunos os puede resultar familiar.
Una vez hayas visto todo lo relacionado con bacterias, quizá quieras ver otros microorganismos, como los eucariotas. También puedes ver todo lo relacionado con virus. Presentan una relación íntima con las bacterias, ya que algunos de ellos, conocidos como bacteriófagos, les infectan. Es un proceso de coevolución en que ambos elementos se adaptan a su contrincante.